
Audit Report
ShibaWarp
September 2023

SHA256 56e12e181a792bd7b73df2c4f5f0f4f9e2aebc768fb35a422502e188f0cf7516

Audited by © cyberscope

ShibaWarp Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Unresolved

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

ShibaWarp Token Audit 2

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ GO Gas Optimization Unresolved

⬤ RSW Redundant Storage Writes Unresolved

⬤ ULTW Transfers Liquidity to Team Wallet Unresolved

⬤ OCTD Transfers Contract's Tokens Unresolved

⬤ RVD Redundant Variable Declaration Unresolved

⬤ RSML Redundant SafeMath Library Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L05 Unused State Variable Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L20 Succeeded Transfer Check Unresolved

ShibaWarp Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Review 5

Audit Updates 5
Source Files 5

Findings Breakdown 6
ST - Stops Transactions 7

Description 7
Recommendation 7

GO - Gas Optimization 8
Description 8
Recommendation 9

RSW - Redundant Storage Writes 10
Description 10
Recommendation 10

ULTW - Transfers Liquidity to Team Wallet 11
Description 11
Recommendation 11

OCTD - Transfers Contract's Tokens 12
Description 12
Recommendation 12

RVD - Redundant Variable Declaration 13
Description 13
Recommendation 14

RSML - Redundant SafeMath Library 15
Description 15
Recommendation 15

L02 - State Variables could be Declared Constant 16
Description 16
Recommendation 16

L04 - Conformance to Solidity Naming Conventions 17
Description 17
Recommendation 18

L05 - Unused State Variable 19
Description 19
Recommendation 19

L07 - Missing Events Arithmetic 20
Description 20

ShibaWarp Token Audit 4

Recommendation 20
L16 - Validate Variable Setters 21

Description 21
Recommendation 21

L20 - Succeeded Transfer Check 22
Description 22
Recommendation 22

Functions Analysis 23
Inheritance Graph 31
Flow Graph 32
Summary 33
Disclaimer 34
About Cyberscope 35

ShibaWarp Token Audit 5

Review

Contract Name ShibaWarp

Compiler Version v0.8.18+commit.87f61d96

Optimization 200 runs

Testing Deploy https://testnet.bscscan.com/address/0xa78464fe4d934799ef1a

e1c1cfe785972cd59485

Network BSC TESTNET

Symbol SBWP

Decimals 18

Total Supply 375,000,000

Audit Updates

Initial Audit 10 Sep 2023

https://github.com/cyberscope-io/audits/blob/main/1-sbwp/v1/

audit.pdf

Corrected Phase 2 13 Sep 2023

Source Files

Filename SHA256

ShibaWarp.sol 56e12e181a792bd7b73df2c4f5f0f4f9e2aebc768fb35a422502e188f0cf7

516

https://testnet.bscscan.com/address/0xa78464fe4d934799ef1ae1c1cfe785972cd59485
https://testnet.bscscan.com/address/0xa78464fe4d934799ef1ae1c1cfe785972cd59485
https://github.com/cyberscope-io/audits/blob/main/1-sbwp/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/1-sbwp/v1/audit.pdf

ShibaWarp Token Audit 6

Findings Breakdown

⬤ Critical 1

⬤ Medium 0

⬤ Minor / Informative 12

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 1 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 12 0 0 0

ShibaWarp Token Audit 7

ST - Stops Transactions

Criticality Critical

Location ShibaWarp.sol#L736

Status Unresolved

Description

The transactions are initially disabled for all users excluding the authorized addresses. The

owner can enable the transactions for all users. Once the transactions are enabled the

owner will not be able to disable them again.

if(!_swapEnabled){

require(_isFeeExempt[sender] || _isFeeExempt[recipient]);

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions. Some suggestions are:

● Introduce a multi-sign wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

ShibaWarp Token Audit 8

GO - Gas Optimization

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L801,830

Status Unresolved

Description

Gas optimization refers to the process of reducing the amount of gas required to execute a

transaction. Gas is the unit of measurement used to calculate the fees paid to miners for

including a transaction in a block on the blockchain.

In the swap functionality, the contract incorporates a crucial adjustment to the totalFee

variable. When its initial value is 0, it is modified to 1. This modification serves a vital

purpose: it ensures that the contract can proceed with its operations without encountering

division by zero issues, which could disrupt the execution.

However, it's important to note that this modification exclusively affects the totalFee

variable. It does not alter the values of individual fee components, such as

rewardDividendBuyFee , rewardDividendSellFee , shibaBurnBuyFee ,

shibaBurnSellFee , buybackBuyFee , and buybackSellFee . Consequently,

despite the adjustment to totalFee , the individual fee portions remain at zero.

As a consequence, the contract carries out certain code segments redundantly. This

redundancy in code execution has the unintended consequence of increasing the overall

gas cost associated with these operations.

ShibaWarp Token Audit 9

if(totalFee == 0) {

totalFee = 1;

}

uint256 totalReceived = address(this).balance;

uint256 totalRewardFee = (rewardDividendBuyFee.add(rewardDividendSellFee));

uint256 totalShibaBurnFee = shibaBurnBuyFee.add(shibaBurnSellFee);

uint256 totalBuybackFee = buybackBuyFee.add(buybackSellFee);

uint256 portionToDistributor = totalReceived.mul(totalRewardFee).div(totalFee);

uint256 portionToBuyback = totalReceived.mul(totalBuybackFee).div(totalFee);

uint256 portionToShibaBurn = totalReceived.mul(totalShibaBurnFee).div(totalFee);

uint256 portionToUtility =

totalReceived.sub(portionToBuyback).sub(portionToDistributor).sub(portionToShibaBurn)

;

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

ShibaWarp Token Audit 10

RSW - Redundant Storage Writes

Criticality Minor / Informative

Location ShibaWarp.sol#L940,1023

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

The contract modifies the state of certain variables even even when their current state

matches the provided argument. As a result, the contract performs redundant storage

writes.

_swapEnabled = true

_isFeeExempt[_addr] = true

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

ShibaWarp Token Audit 11

ULTW - Transfers Liquidity to Team Wallet

Criticality Minor / Informative

Location ShibaWarp.sol#L1058

Status Unresolved

Description

The contract owner has the authority to transfer funds without limit to the team wallet.

These funds have been accumulated from fees collected from the contract. The owner may

take advantage of it by calling the rescueBNB method.

function rescueBNB(uint256 amount) external onlyOwner{

payable(msg.sender).transfer(amount);

}

Recommendation

The contract could embody a check for the maximum amount of funds that can be

swapped, since a huge amount may volatile the token's price. The team should carefully

manage the private keys of the owner’s account. We strongly recommend a powerful

security mechanism that will prevent a single user from accessing the contract admin

functions. Some suggestions are:

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-sign wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

● Renouncing the ownership will eliminate the threats but it is non-reversible.

ShibaWarp Token Audit 12

OCTD - Transfers Contract's Tokens

Criticality Minor / Informative

Location ShibaWarp.sol#L1050

Status Unresolved

Description

The contract owner has the authority to claim all the balance of the contract. The owner

may take advantage of it by calling the rescueToken function.

function rescueToken(address tokenAddress, address to) external onlyOwner

returns (bool success) {

uint256 _contractBalance =

IERC20(tokenAddress).balanceOf(address(this));

return IERC20(tokenAddress).transfer(to, _contractBalance);

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions. Some suggestions are:

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-sign wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

● Renouncing the ownership will eliminate the threats but it is non-reversible.

ShibaWarp Token Audit 13

RVD - Redundant Variable Declaration

Criticality Minor / Informative

Location ShibaWarp.sol#L774,817,848,859

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

The contract declares certain variables that are not used in a meaningful way by the

contract. As a result, these variables are redundant.

uint256 _totalFee = totalBuyFee;

uint256 _rewardDividendFee = rewardDividendBuyFee;

uint256 _shibaBurnFee = shibaBurnBuyFee;

uint256 _buybackFee = buybackBuyFee;

uint256 _utilityFee = utilityBuyFee;

if (recipient == pair) {

_totalFee = totalSellFee;

_rewardDividendFee = rewardDividendSellFee;

_shibaBurnFee = shibaBurnSellFee;

_buybackFee = buybackSellFee;

_utilityFee = utilitySellFee;

}

bool swapTokensForETHSuccess = false

bool swapETHForTokensSuccess = false

bool distributorDepositSuccess = false;

try distributor.deposit{value: portionToDistributor}() {

distributorDepositSuccess = true;

} catch {}

ShibaWarp Token Audit 14

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

ShibaWarp Token Audit 15

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location contracts/ShibaWarp.sol

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library. Since the version of the contract is

greater than 0.8.0 then the pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breakin

g-changes.

https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

ShibaWarp Token Audit 16

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L337,610

Status Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

IERC20 SHIBA = IERC20(0x95aD61b0a150d79219dCF64E1E6Cc01f0B64C4cE)

address public selllessSwap

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

ShibaWarp Token Audit 17

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L135,136,153,171,329,337,378,383,387,582,60
1,602,613,625,638,958,966,971,980,987,1000,1013,1014,1022,1026,103
9

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

ShibaWarp Token Audit 18

function DOMAIN_SEPARATOR() external view returns (bytes32);

function PERMIT_TYPEHASH() external pure returns (bytes32);

function MINIMUM_LIQUIDITY() external pure returns (uint);

function WETH() external pure returns (address);

address public _token

IERC20 SHIBA = IERC20(0x95aD61b0a150d79219dCF64E1E6Cc01f0B64C4cE)

uint256 _minDistribution

uint256 _minPeriod

address _selllessSwap

uint256 _minSharesRequired

mapping(address => bool) _isFeeExempt

uint256 public _swapEnabledTime

uint256 public immutable _totalSupply = 375000000 * 10**DECIMALS

address payable public immutable DividendReceiver

...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

ShibaWarp Token Audit 19

L05 - Unused State Variable

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L7

Status Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is never

used in any of the contract's functions. This can happen if the state variable was originally

intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult to

understand and maintain. They can also increase the size of the contract and the cost of

deploying and interacting with it.

int256 private constant MAX_INT256 = ~(int256(1) << 255)

Recommendation

To avoid creating unused state variables, it's important to carefully consider the state

variables that are needed for the contract's functionality, and to remove any that are no

longer needed. This can help improve the clarity and efficiency of the contract.

ShibaWarp Token Audit 20

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L379,402

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

minPeriod = _minPeriod

totalShares = totalShares.sub(shares[shareholder].amount).add(amount)

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

ShibaWarp Token Audit 21

L16 - Validate Variable Setters

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L384,1016,1017

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

selllessSwap = _selllessSwap

utilityReceiver = payable(_utilityReceiver)

buybackReceiver = payable(_buybackReceiver)

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

ShibaWarp Token Audit 22

L20 - Succeeded Transfer Check

Criticality Minor / Informative

Location contracts/ShibaWarp.sol#L462

Status Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if the result

is successful. Otherwise, the contract may wrongly assume that the transfer has been

established.

SHIBA.transfer(shareholder, amount)

Recommendation

The contract should check if the result of the transfer methods is successful. The team is

advised to check the SafeERC20 library from the Openzeppelin library.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

ShibaWarp Token Audit 23

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

SafeMathInt Library

mul Internal

div Internal

sub Internal

add Internal

SafeMath Library

add Internal

sub Internal

sub Internal

mul Internal

div Internal

div Internal

mod Internal

IERC20 Interface

totalSupply External -

balanceOf External -

ShibaWarp Token Audit 24

allowance External -

transfer External ✓ -

approve External ✓ -

transferFrom External ✓ -

IUniswapV2Pair Interface

name External -

symbol External -

decimals External -

totalSupply External -

balanceOf External -

allowance External -

approve External ✓ -

transfer External ✓ -

transferFrom External ✓ -

DOMAIN_SEPARATOR External -

PERMIT_TYPEHASH External -

nonces External -

permit External ✓ -

MINIMUM_LIQUIDITY External -

factory External -

token0 External -

token1 External -

ShibaWarp Token Audit 25

getReserves External -

price0CumulativeLast External -

price1CumulativeLast External -

kLast External -

mint External ✓ -

burn External ✓ -

swap External ✓ -

skim External ✓ -

sync External ✓ -

IUniswapV2Rou
ter01

Interface

factory External -

WETH External -

addLiquidity External ✓ -

addLiquidityETH External Payable -

removeLiquidity External ✓ -

removeLiquidityETH External ✓ -

removeLiquidityWithPermit External ✓ -

removeLiquidityETHWithPermit External ✓ -

swapExactTokensForTokens External ✓ -

swapTokensForExactTokens External ✓ -

swapExactETHForTokens External Payable -

swapTokensForExactETH External ✓ -

ShibaWarp Token Audit 26

swapExactTokensForETH External ✓ -

swapETHForExactTokens External Payable -

quote External -

getAmountOut External -

getAmountIn External -

getAmountsOut External -

getAmountsIn External -

IUniswapV2Rou
ter02

Interface IUniswapV2
Router01

removeLiquidityETHSupportingFeeOnTr
ansferTokens

External ✓ -

removeLiquidityETHWithPermitSupporti
ngFeeOnTransferTokens

External ✓ -

swapExactTokensForTokensSupporting
FeeOnTransferTokens

External ✓ -

swapExactETHForTokensSupportingFee
OnTransferTokens

External Payable -

swapExactTokensForETHSupportingFee
OnTransferTokens

External ✓ -

IUniswapV2Fac
tory

Interface

getPair External -

allPairs External -

allPairsLength External -

feeTo External -

feeToSetter External -

createPair External ✓ -

ShibaWarp Token Audit 27

IDividendDistri
butor

Interface

setDistributionCriteria External ✓ -

setShare External ✓ -

deposit External Payable -

process External ✓ -

setMinimumSharesRequired External ✓ -

setSelllessSwapAddress External ✓ -

DividendDistrib
utor

Implementation IDividendDis
tributor

Public ✓ -

External Payable -

setDistributionCriteria External ✓ onlyToken

setSelllessSwapAddress External ✓ onlyToken

setMinimumSharesRequired External ✓ onlyToken

setShare External ✓ onlyToken

deposit External Payable -

process External ✓ onlyToken

shouldDistribute Internal

distributeDividend Internal ✓

claimDividend External ✓ -

getSelllessSwap External -

getUnpaidEarnings Public -

ShibaWarp Token Audit 28

getCumulativeDividends Internal

addShareholder Internal ✓

removeShareholder Internal ✓

Ownable Implementation

Public ✓ -

owner External -

isOwner Public -

renounceOwnership External ✓ onlyOwner

transferOwnership External ✓ onlyOwner

_transferOwnership Internal ✓

ERC20Detailed Implementation IERC20

Public ✓ -

name External -

symbol External -

decimals External -

ShibaWarp Implementation ERC20Detail
ed, Ownable

Public ✓ ERC20Detailed
Ownable

transfer External ✓ -

transferFrom External ✓ -

_basicTransfer Internal ✓

ShibaWarp Token Audit 29

_transferFrom Internal ✓

takeFee Internal ✓

swapBack Public ✓ swapping

shouldTakeFee Internal

shouldSwapBack Internal

allowance External -

decreaseAllowance External ✓ -

increaseAllowance External ✓ -

approve Public ✓ -

setEnableSwap External ✓ onlyOwner

setIsDividendExempt External ✓ onlyOwner

setSelllessSwapAddress External ✓ onlyOwner

setMaxWallet External ✓ onlyOwner

setDistributionCriteria External ✓ onlyOwner

setDistributorSettings External ✓ onlyOwner

setMinimumSharesRequired External ✓ onlyOwner

setBuyFees External ✓ onlyOwner

setSellFees External ✓ onlyOwner

setFeeReceivers External ✓ onlyOwner

setWhitelist External ✓ onlyOwner

setLP External ✓ onlyOwner

totalSupply External -

balanceOf Public -

ShibaWarp Token Audit 30

checkFeeExempt External -

isNotInSwap External -

rescueToken External ✓ onlyOwner

rescueBNB External ✓ onlyOwner

External Payable -

ShibaWarp Token Audit 31

Inheritance Graph

ShibaWarp Token Audit 32

Flow Graph

ShibaWarp Token Audit 33

Summary
ShibaWarp contract implements a token mechanism. This audit investigates security issues,

business logic concerns, and potential improvements. There are some functions that can be

abused by the owner like stopping transactions. A multi-wallet signing pattern will provide

security against potential hacks. There is also a limit of max 25% fees.

ShibaWarp Token Audit 34

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

ShibaWarp Token Audit 35

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

